Mathematics at

 Astwood Bank Primary
Vision Statement

Astwood Bank Primary School is an innovative learning community committed to excellence.

Mission Statement

We will endeavour to achieve this by:

- Constantly striving to find and create better ways of pursuing our goals.
- Providing happy supportive and safe environment in which everyone can achieve their full potential.
- Being truly inclusive and giving every child the opportunity to develop talents.
- Encouraging everyone to become creative, motivated and life-long learners. prepared for an ever-changing global community.
- Recognising and celebrate success.

Aims for our pupils

- To develop a growth mindset and positive attitude towards mathematics.
- To become confident and proficient with number, including fluency with mental calculation and look for connections between numbers.
- To become problem solvers, who can reason, think logically, work systematically and apply their knowledge of mathematics.
- To develop their use of mathematical language.
- To become independent learners and to work co-operatively with others.
- To appreciate real life contexts to learning in mathematic

As a teaching for Mastery School, we strive to achieve the following principles in our lessons:

- Achievable for all
- Deep and sustainable learning
- The ability to build on something that has already been sufficiently mastered by spending longer time on topics.
- The ability to reason about a concept and make connections.

The image below exemplifies both this notion and our aims for provision in maths perfectly as it shows everyone on the same journey, broadly going at the same pace but with some out in front exploring new challenges and some needing support to keep up.

Maths lessons are taught in whole class groups with lessons designed to promote our inclusive ethos as well as the three aims of the National Curriculum: fluency, reasoning and problem solving.

When planning and designing our Maths curriculum we ensure all staff have good understanding of the three key aims of the National Curriculum and the 'Five Big Ideas' which underpin teaching for mastery:

FLUENCY - REASONING - PROBLEM SOLVING

These three key aims of the National Curriculum should be addressed in each sequence of learning.
5 Big ideas of Mastery

Intent
Our new progression in calculation policy has been created to reflect the methods we use to teach for Maths Mastery Progression.
Our teaching for mastery is underpinned by NCETM's 5 Big ideas.

- Opportunities for Mathematical thinking allow children to make chains of reasoning connected with the other areas of their mathematics.
- A focus on Representation and Structure ensures concepts are explored using concrete, pictorial and abstract representation, the children actively look for patterns and generalise whilst problem solving.
- Coherence is achieved through the planning of small, connected steps to link every question and lesson within a topic.
- Teachers use both procedural and conceptual Variation within their lessons and there remains an emphasis on Fluency with relentless focus on number and times table facts.

Classroom Norms to Establish

- Everyone can learn mathematics to the highest levels.
- If you can't do it, 'you can't do it yet'.
- Mistakes are valuable.
- Questions are important.
- Mathematics is about creativity and problem solving.
- Mathematics is about making connections and communicating what we think.
- Depth is much more important than speed.

Teaching for Mastery Principles

- It is achievable for all - we have high expectations and encourage a positive 'can do' mindset towards mathematics in all pupils, creating learning experiences which develop children's resilience in the face of a challenge and carefully scaffolding learning so everyone can make progress.
- Deep and sustainable learning - lessons are designed with careful small steps, questions and tasks in place to ensure the learning is not superficial.
- The ability to build on something that has already been sufficiently mastered - Pupils' learning of concepts is seen a continuum across the school.
- The ability to reason about a concept and make connections - Pupils are encouraged to make connections and spot patterns between different concepts (e.g the link between ratio, division and fractions) and use precise mathematical language which frees up working memory and deepen conceptual understanding.
- Conceptual and procedural fluency - Teachers move mathematics from one context to another (using objects, pictorial representations, equations and word problems). There are high expectations for pupils to learn times tables, key number facts (so they are automatic) and have a true sense of a number. Pupils are also encouraged to think whether their method for tackling a given calculation or problem is Appropriate, Reliable and Efficient.
- Problem solving is central - this develops pupils' understanding of why something works so that they truly have an appreciation of what they are doing rather than just learning to repeat routines without grasping what is happening.
- Challenge through greater depth - rather than accelerated content, (moving onto next year's concept) teachers set tasks to deepen knowledge and improve reasoning skills within the objectives of their year group.

Curriculum design and planning

- To support us in delivering a mastery curriculum we use resources from the NCETM to support staff development alongside materials from White Rose Maths, I See Maths, Nrich, Third Space Learning and TT Rockstars to support teaching and learning.
- Staff use White Rose Maths Schemes of Learning as a starting point to develop a coherent and comprehensive conceptual pathway through the mathematics. The focus is on the whole class progressing together. Collaborative planning is encouraged to ensure consistency.
- Learning is broken down into small, connected steps building from what pupils already know. The lesson journey should be detailed and evident on Smart Notebook
- Learning is broken down into small, connected steps building from what pupils already know. The lesson journey should be detailed and evident on Smart Notebook or power point as there is no requirement for teachers to produce detailed paper plans.
- Difficult points and potential misconceptions are identified in advance and strategies to address them planned.
- Key questions are planned, to challenge thinking and develop learning for all pupils.
- Contexts and representations are carefully chosen to develop reasoning skills and to help pupils' link concrete ideas to abstract mathematical concepts.
- The use of high-quality materials and tasks to support learning and provide access to the mathematics is integrated into lessons. These may include White Rose Maths Schemes of Learning and Assessment Material, NCETM Mastery PD Materials and Assessment materials, Nrich, visual images and concrete resources.

Freedom to pick and choose what's best

- Opportunities for extra fluency practice (instant recall of key facts (KIRF), such as number bonds, times tables, division facts, addition and subtraction facts) should be provided during and outside of mathematics lessons.

Lesson Structure:

- Lessons begin with flashbacks and KIRF - 5 minutes of flashbacks and 5 minutes of KIRFs.
- Followed by a sharply focused, crafted lesson.
- Do it: whole class working together (ping ponging between teacher and pupils).
- Secure it: independent work to show security in the objectives of the lesson (interventions for pupils needing support take part during this section of the lesson).
- Deepen it: using and applying across various problem solving and reasoning contexts.

Variation theory is at the heart of lesson design. This involves the careful selection of tasks and activities that are varied slightly to develop and deepen pupils' understanding of the procedures or concepts being studied.

- Key new learning points are identified explicitly.
- There is a regular interchange between concrete/contextual ideas, pictorial representations and their abstract/symbolic representations.
- Mathematical generalisations are emphasised as they emerge from underlying mathematics.
- Making comparison is an important feature of developing deep knowledge. The questions, "What is same, what is different?" are often used to draw attention to essential features of concept.
- Repetition of key ideas for example in the form of whole class recitation or repeating to talk partner is used frequently. This helps to verbalise, embed mathematical ideas, and provide pupils shared language to think and communicate mathematics.
- Formative assessment is carried out throughout the lesson, the teacher checks pupils' understanding and adjust the lesson accordingly.
- Gaps in pupils' knowledge and understanding are identified early and are addressed through individual or small group intervention, either on the same day or on the next day.

The Role of the teaching assistant
Learning Support Assistants (LSAs) support pupils in lessons by enabling them to access the curriculum and become independent. Sometimes, under direction of the teacher, this will involve a LSA working directly with an individual or group of pupils. At other times, the LSA will take on a 'helicopter' role: observing and monitoring pupils for signs, they need support and then providing timely intervention at the point of need.

Inclusion and Special Needs
Astwood Bank aims to meet the needs of all, considering gender, ethnicity, culture, religion, language, disability, age and social circumstances. The provision
for children with special needs is detailed in the SEND Policy. SEN pupils may be supported by additional adults, different resources, differentiated activities. They may also complete additional activities outside of the mathematics lesson or be taught in a smaller class size (Y4-6). We have high expectations of all children and strongly believe that all children can achieve in mathematics. Some may take longer to grasp concepts and may need careful scaffolding or extra time/support.

Early Years Foundation Stage (EYFS)

Our reception team use the NCETM Mastering Number Scheme to teach children the basics of number. Children in EYFS explore mathematical concepts through active exploration and their everyday play-based learning. Children are taught key concepts and develop number sense using a hands-on practical approach. EYFS practitioners provide opportunities for children to manipulate a variety of objects, which supports their understanding of quantity and number. Pupils explore the 'story' of numbers to ten and the development of models and images for numbers as a solid foundation for further progress. The CPA approach is used when teaching children key mathematical skills. Practitioners allow children time for exploration and the use of concrete objects helps to support children's mathematical understanding. Mathematics in the early years provides children with a solid foundation that will enable them to develop skills as they progress through their schooling and ensures children are ready for the National Curriculum.

Marking

At Astwood Bank Primary, we recognise the importance of feedback as an integral part of the teaching and learning cycle and aim to maximize the effectiveness of its use in practice. We are mindful also of the research surrounding effective feedback and the workload implications of written marking, as well as research from cognitive science regarding the fragility of new learning.

Our policy is underpinned by the evidence of best practice from the Education Endowment Foundation (EFF) and other expert organisations. The Education Endowment Foundation research shows that effective feedback should:

- Redirect or refocus either the teachers' or the learner's actions to achieve a goal.
- Be specific, accurate and clearer.
- Encourage and support further effort.
- Be given sparingly so that it is meaningful.
- Put the onus on students to correct their own mistakes, rather than providing correct answers for them.
- Alert the teachers to misconceptions, so that the teacher can address these in subsequent lessons.

Notably, the department for Education's research into teacher workload has highlighted written marking as a key contributing factor to workload. As such we have investigated alternatives to written marking which can provide effective feedback in line with the EEF's recommendations, and those of the DFE's expert group which emphasises that marking should be: Meaningful, manageable, and motivating. We have also taken note of the advice provided by the NCETM (National Centre for Excellence in Teaching Mathematics) that the most important activity for teachers is the teaching itself, supported by the design and preparation of lessons.

Our policy on feedback has at its core several principles:

- The sole focus of feedback should be to further children's learning.
- Children should receive feedback within the lesson (live marking) itself or in the next appropriate lesson. The next step' is usually the next lesson.
- Feedback should empower children to take responsibility for improving their own work; it should not take away from this responsibility by adults doing the hard thinking work for the pupil.
- Feedback is a part of the school's wider assessment processes, which aim to provide an appropriate level of challenge to pupils in lessons, allowing them to
make good progress
Feedback and Marking in Practice
Feedback occurs at one of four common stages in the learning process:

1. Immediate feedback - at the point of teaching
2. Summary feedback - at the end of a lesson/task
3. Next lesson feedforward - further teaching enabling the children to identify and improve for themselves areas for development identified by teachers upon review of work after a previous lesson had finished.
4. Summative feedback - tasks planned to give teachers definitive feedback about whether a child has securely mastered the material under study.

These practices can be seen in the following:

Type	What it looks like	Evidence (for observer)
Immediate	- Includes teacher-gathering feedback from teaching within the course of the lesson, including mini-whiteboards, bookwork, etc. - Takes place in lessons with individuals or small groups. - Often given verbally to pupils for immediate actions - May involve use of teaching assistant to provide support of further challenge. - May redirect the focus of teaching or the task.	Lesson - Live marking using pink for think and blue for brill, observations/learning walks

Summary	- Takes place at the end of a lesson of activity. - Often involves whole groups or classes. - Provides an opportunity for evaluation of learning in the lesson. - may take the form of a quiz, test or score on a game.	Lesson observations/learning walks Recorded in books or logged separately by the teacher.
Next step is the next lesson	- Errors and misconceptions addressed in subsequent lessons.	Pink for think and blue for brill in books.
Summative	- End of topic and, End of termly summative assessment provided by White Rose Maths Scheme to inform teacher judgement, provide further opportunities to identify gaps in pupils' learning and design future tasks. - In Year 6 these tests will usually be in the form of practice SATs papers.	

Role of the Subject Leader

- Ensures teachers understand the requirements of the National Curriculum and supports them to plan lessons.
- Leads by example by setting high standards in their own teaching.
- Leads continuing professional development; facilitates joint professional development - especially Lesson Study; provides coaching and feedback for teachers to improve pupil learning.
- Leads the whole-school monitoring and evaluation of teaching and learning in mathematics by observing teaching and learning in mathematics regularly; analysing assessment data to plan whole school Improvement in mathematics; conducting work scrutiny to inform evaluation of progress; conducting pupil interviews.
- Takes responsibility for managing own professional development by participating in external training, independent private study, engaging in educational research and scholarly reading and keeping up to date with Teaching for Mastery developments.
- Keeps parents informed about mathematics issues.
- Ensures that the school's senior leaders and governors are kept informed about the quality of teaching and learning in mathematics.
- Works in close partnership with the school's senior leaders to ensure the learning needs of all pupils in mathematics are met effectively.
- Keeps the school's policy for mathematics under regular review.

Astwood Bank Primary Calculation Policy

Addition

Year group	Objective and Strategies	Concrete	Pictorial	Abstract
Reception	Adding one/ one more	Use concrete resources to show how 1 object can be added.	Draw more objects to show what has been added. $3+1=4$	$2+1=$ \qquad $3+1=$ \qquad Use number fans to show 1 more/1 less.
Reception and Y1	Combining two parts to make a whole			$4+3=7$ (say: 4 plus 3 is the same as 7)
Reception and Y1	Starting at the bigger number and counting on	$12+5=?$ Start with the larger number on the bead string and then count on the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Reception and Y1	Knowing numberbonds to 10 from memory.	Use numicon to show pairs of numbers to make 10. Use this knowledge to make numberbonds to 20. Use dienes and cuisenaire to show numberbonds to 10. Use unifix to make towers of 10: Record number sentence as: $9+1=10$ $8+2=10$ etc	Use a part-part whole diagram to complete the missing number. Use ten frames: $\mathbf{3 +}_{+}=\mathbf{1 0}$, if you have 3 , how many more to make 10?	
2	Regrouping to make 10.	$6+5=11$ Start with the bigger number and use the smaller number to make 10. Then add the rest to 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10. $3+9=$	$7+4=11$ If I am at seven, how many more do I need to make 10 ? $7+3=10$ How many more do I need to add on now? $10+1=11$

Adding three
single digits

		Step 2 Add the tens. 2 tens +1 ten $=3$ tens $23+14=37$		
$\begin{gathered} 2,3,4 \\ 5,6 \end{gathered}$	Column addition method- with exchanging Y2 - 2 digit + 2 digit Y3-up to 3 digit + 3 digit Y4 - up to 4 digit + 4 digit (formal written method) Y5/6 - beyond 4 digit + 4 digit (formal written method) plus adding decimals	Make both numbers on a place value grid using Dienes or PV counters Add up the ones and exchange 10 ones for a ten. Add up the rest of the columns, exchanging the 10 counters from one column for the next place value column until every column has been added. This can also be done with Dienes to help children clearly see those 10 ones equal 1 ten and 10 tens equal 100.	Children can draw a pictoral representation of the columns and place value counters to further support their learning and understanding. $\begin{array}{\|r\|} \hline 2634 \\ +4517 \\ \hline 7151 \\ \hline \end{array}$ This can also be done with Dienes.	Start by partitioning the numbers before moving on to clearly show the exchange below the addition.$\begin{aligned} & 20+5 \\ & 40+8 \\ & \hline 60+13=73 \end{aligned}$$+$tens ones 2 7 1 5 4 2 1 536 $\mathbf{4}$ 11$\begin{array}{r} 72.8 \\ +54.6 \\ \hline 127.4 \\ \hline 11 \end{array} \begin{array}{r} £ \\ \hline \end{array}$

		As children move on to decimals, money and decimal place value counters can be used to support learning.		

Vocabulary per year group:

Each year group should build on and consolidate previous year groups
ADDITION

Rec Part - several parts added together makes a whole. Whole - a whole is made up of a number of parts. Equal - symbol (=) read 'equals' or 'is the same as'	Year 1 Numeral - how to write a number using digits. Digit - 24 is a 2-digit number. The 2 represents the tens, the 4 represents the ones. Sum - the total of one or more additions Total - the sum found by adding	Year 2 Addend - a number to be added to another. Commutative addition is commutative so $8+2=2+8$ Inverse - addition and subtraction are inverse operations so $7+3=10$ and $10-3=7$ Exchange - when adding the ones in column addition if the total is greater than 10 , we exchange 10 ones for a ten Bridging 10 - adding 2 numbers to make ten and then add on the rest	Year 3 Compensation - a mental strategy where one number is rounded to make the calculation easier and then adjusted. e.g. $56+38$ is treated as $56+40$ and then 2 is subtracted to compensate	Year 4 Consolidation of terms learnt in previous year groups	Year 5 Integer - any of the positive or negative whole numbers Positive - any number larger than zero Negative - any number smaller than zero	Year 6 Consolidation of terms learnt in all previous year groups.

Year group	Objective and Strategies	Concrete	Pictorial	Abstract
Reception	Taking away one/one less	Use concrete resources to show how 1 object can be taken away.	Cross out drawn objects to show what has been taken away. $4-1=3$	$5-1=$ \qquad $3-1=$
1	Taking away ones	Use concrete resources to show how objects can be taken away. $6-2=4$ $6-2=4$ When using counters/cubes in a part whole model, put in the whole number and then move the number to take away into one of the parts.	Cross out drawn objects to show what has been taken away. $14-5=9$	$18-3=$ $8-2=$
1\&2	Counting back	Make the larger number in your subtraction. Move the beads along your bead string as you count backwards in ones. $13-4$ Use counters and move them away from the group as you take them away counting backwards as you go.	Count back on a number line or number track. Start at the bigger number and count back the smaller number showing the jumps on the number line. $57-23=$ \qquad This can progress all the way to counting back using two 2-digit numbers.	Put 13 in your head, count back 4. What number are you on? Use your fingers to help.

1\& 2	Part-part Whole Model	Link to addition- use the part-part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? $10-6=$ \qquad	Use a pictorial representation of objects to show the part-part whole model.	5 10 Move to using numbers within the part whole model.
2	Find the difference	Compare amounts and objects to find the difference. Use cubes to build towers or make bars to find the difference Use basic bar models with items to find the difference	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old. Find the difference in age between them. Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
2	Subtracting two, 2-digit numbers by partitioning	44-23= Make the first number using Dienes. Take away the second number. Count what is left.	44-23= Draw the tens and ones. Cross out the second number. Count what is left.	Partition each 2 digit number into tens and ones using the part-part whole model. Subtract the tens, Subtract the ones and then recombine.

Vocabulary per year group:

Each year group should build on and consolidate previous year groups

SUBTRACTION

Rec	Year 1	Year 2	Year 3	Year 4, 5 \& 6
Whole - a whole subtract any number of	Subtract - to carry out the process of	Inverse - addition and subtraction are inverse	Subtrahend - a number to be subtracted from another.	Consolidation of terms learnt in previous year groups.
parts equals a part. Take away - to remove a number of items from	subtraction. Minus - a name for the symbol ‘-‘	operations so $10-4=6$ and $6+4=10$ (it is NOT commutative)	Minuend - a number from which another is to be subtracted. Minuend - Subtrahend = Difference	
a group.		Exchange - when the number to subtract is smaller than the	Compensation - a mental strategy where one number is rounded to make the calculation easier and then adjusted.	

| | number we are
 subtracting from we
 exchange a ten into ten
 ones. | e.g. $56-38$ is treated as $56-40$ and then 2 is
 added to compensate | |
| :--- | :--- | :--- | :--- | :--- |

Multiplication

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Year group \& Objective and Strategies \& Concrete \& \& \& \& \& \& Abstract \\
\hline 1 \& Doubling \& \begin{tabular}{l}
Use practical activities to show how to double a number. \\
Halves and doubles identified in a range of contexts, with a focus on equal halves. Shown on 10 -frames and with Numicon.
\[
4 \times 2=8
\]
\end{tabular} \& \multicolumn{5}{|l|}{Draw pictures to show how to double a number.} \& Partition a number and then double each part before recombining it back together. \\
\hline 1\&2 \& \begin{tabular}{l}
Counting in multiples/ grouping \\
Y1 - count in \(2 s, 5 s\) and \(10 s\) \\
Y2 - count in 2s, \(3 \mathrm{~s}, 5 \mathrm{~s}\) from 0 and 10s from any number
\end{tabular} \& Count in multiples supported by concrete objects in equal groups. \& Use a counti \& 3 \& 3 \& to

3 \& \begin{tabular}{l}
ntinue support in

4 groups of $3=12$

 \&

Count in multiples of a number aloud.

Write sequences with multiples of numbers.

$$
\begin{aligned}
& 2,4,6,8,10 \\
& 5,10,15,20,25,30
\end{aligned}
$$

\end{tabular}

\hline
\end{tabular}

| Repeated |
| :--- | :--- | :--- | :--- | :--- |
| addition |
| 2 |

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Also :

$$
31 \times 4=
$$

tens	ones
30	1
$\times \quad 4$	
$120+4$	

\times	30	5
7	210	35

$210+35=245$
Start with multiplying by one digit numbers and showing the clear addition alongside the grid.

Vocabulary per year group:					
Each year group should build on and consolidate previous year groups					
MULTIPLICATION					
Rec	Year 1 Groups of, sets of, lots of	Year 2 Multiply - to carry out the process of multiplication Multiple - a number in a times table e.g. the multiples of 2 are 2,4,6 etc. Groups of, lots of, sets of, times, multiplied by - different ways to say the symbol " x "	Year 3 Factor - factor x factor $=$ product Product - the result of multiplying 2 numbers	Year 4 Factor factor x factor $=$ product e.g. 1,2,3,4,6,12 are factors of 12 Factor pairs - A factor pair is 2 factors multiplied together to make a given product	Year 5 \& 6
					Prime number - A whole number greater than 1 that only has two factors, itself and 1.
					Composite - a non-prime number.
					or more other numbers e.g. 3 is a common factor of 9 and 30,7 is a common factor of 14 and 21 .
					Prime factor - the factors of a number that are prime e.g. 2 and 3 are the prime factors of 12.
					Common multiple - the smallest positive number that is a multiple of two or more numbers e.g. 24 is a common multiple of $4,6,8$ etc.

| Division as |
| :--- | :--- | :--- | :--- | :--- |
| grouping |

		Use place value counters to divide using the bus stop method alongside $42 \div 3=$ Start with the biggest place value, we are sharing 40 into three groups. We can put 1 ten in each group and we have 1 ten left over. We exchange this ten for ten ones and then share the ones equally among the groups. We look how much in 1 group so the answer is 14 .	$9 2 \div 4 \quad 4 \longdiv { 2 3 }$	

Long division 4 digit divided by a 2 digit number

Method 1 -

create a skeleton tables to help

$$
\begin{array}{rrrrr}
2 & 0 & 5 & 1 x & 24 \\
24 \begin{array}{rrr}
4 & 9 & 0 \\
2 x & 48 \\
-48 & 1 & 3 x
\end{array} & 72 \\
\hline \mathbf{1} 2 & 0 & 5 x & 96 \\
-12 & 0 & 10 \times 240 \\
\hline & 0 & &
\end{array}
$$

Method 2-
use factors of the divisor

$2 4 \longdiv { 4 9 2 0 }$

5 and 4 are factors of 24
$\longrightarrow \begin{array}{r}0820 \\ 64^{4} 9^{1} 20\end{array}$

Divise the number by 6
then that amswer by 4
205
$4 \longdiv { 8 2 0 }$

Each year group should build on and consolidate previous year groups

DIVISION

Rec \& Year 1

Sharing - share equally several objects into a specified number of groups. Divide - to carry out the process of division

Year 2

Sharing - sharing equally between
Grouping - put into groups of
Divided by - sharing or grouping. Inverse - multiplication and division are inverse operations so $10 \div 2=5$ and $5 \times 2=10$ (it is NOT commutative)

Year 3, 4, 5 and 6

Dividend - the number that is being divided into equal parts.
Divisor - for sharing: the number that it is being shared between. For grouping: the number in each
group $\ln 15 \div 3,15$ is the dividend and 3 is the divisor
Quotient - the result of a division
dividend \div divisor $=$ quotient
Divisible - A whole number is divisible by another if there is no remainder after division.
Remainder - the amount remaining after division.
e.g. $29 \div 7=4 \mathrm{r} 1$

Reception

Objective	Visual representations						
Know 1 more/less in the range 1 100 , focusing on bordering tens boundaries	Identify and show one more/less in different ways. Example game: one more/less bingo.		Find mis focusing	in ten	ber track, 32		
With visuals, discern teens from tens	Organise large quantities in groups of 10 e.g. with egg boxes or pipe cleaners.	Use tee 馴	/tens ma Thurteen Thrity-one	13	Identify and make 2-digit numbers with dienes, showing in different ways. Is it 34?		Partition 2-digits numbers using place-value cards
Able to represent 110 in a range of ways, working out small quantities without counting all items	Immediate recognition of Numicon, 10 -frame images, tally charts, dot patterns and finger patterns.		Represent numbers on fingers in different ways.			Estimate position of numbers on blank number lines with different start/end numbers.	
Break down 1-10 in all possible ways, write number sentences using + , - and =	Subitizing games for regular and irregular dot patterns, with children visualising quantities in two parts.		Arrangement of 2 colours of items e.g. in egg box 10 -frame or with Numicon.			Introductio individual	Introduction of part-whole model from individuals squares/items to bars.

Objective	Visual representations
Represent and use number bonds and related subtraction facts within 20	10 -frames and 2 -colour number tracks show calculations bordering 10 : 'how many to 10, how many more?' Lead to use of blank number line. Equivalence shown with balance scales and dice patterns. Bar models used to show relationship between addition and subtraction. \square
Count in multiples of 2,5 and 10	100 -square with columns highlighted used to support counting. The Slavonic Abacus (iPad app 'Number Rack') used to visualise quantity when counting. Count in visual then hidden groups of 2,5 and 10. 5 people in each tent
Recognise and make one-half in a range of ways (discern examples from non-examples); identify onequarter	Half of a shape/capacity, number of objects, 10 -frame half/double, half of length, half of an amount of money. What is half of this amount?
Link the value of coins to a matching visual	Match value of coins to Numicon pieces, use Numicon to support calculations involving money.

Year 2

Objective	Visual representations	
Represent numbers 1100 in a range of ways, showing understanding of place value	Represent tens/teens using dienes, showing numbers in different ways. Partition 2-digits numbers using place-value cards. Estimate position of numbers on blank number lines with different start/end.	Recognise amount on Slavonic Abacus, seeing tens and ones; find missing numbers on 100 -square.
Use different calculation strategies for adding and subtracting one and twodigit numbers	Calculation within 30 using 10 -frames, lead to use of number line, e.g. use egg-box 10 -frames and app 'I See Addition and Subtraction'.	Bar modelling to show relationship between + and - (using words 'whole/parts'). Include spatial reasoning estimates.
Understand x as repeated adding, find related x and \div facts from a number sentence	Numicon and images of repeated quantities show multiplication as repeated addition. Arrays show commutativity of multiplication. Columns/rows circled to link to division.	Bar model shows relationship between whole/ parts and makes links to division.

Year 3

\begin{tabular}{|c|c|}
\hline Objective \& Visual representations \\
\hline Use efficient formal written methods for multiplication and division \& \begin{tabular}{l}
Multiplication modelled using place value coins, leading to efficient written forms: \\
The concept of 'How many [divisors] in [dividend]' shown using Numicon, part-hidden arrays and by making shapes with matchsticks. \(20 \div 3\) (how many 3 s in 20 ?) and \(20 \div 5\) (how many 5 s in 20 ?):
\begin{tabular}{l|l|l|l}
\& 20 \& 4 \\
\hline \& 10 \& 10 \& 18 \\
6 \& 10 \& 10 \& 10 \\
10 \& 10 \& 10 \& 10 \\
10 \& 10 \& 10 \\
10 \& 10 \& 10
\end{tabular}

24 dots.

How many rows?

\end{tabular}

\hline Simple unit/non -unit fractions represented in a range of ways; different fractions compared including equivalence \& Identify fraction of shaded shape; position fractions on a number line; use fraction cards to show equivalence and compare fractions.

\hline Use quarters, halves and tenths as counting numbers going over 1 \& Modelled with fraction cards and on number lines.

\hline
\end{tabular}

Objective	Visual representations							
Represent 4－ digit numbers in a range of ways，showing understanding of place value	（10） 100 （10） $10 \quad 10 \quad 10 \quad 10$ （1） $10 \times 10 \times 0$ （1） 10					Estimate the p different start／e	lank	ber lines with 5000 $10,000$
Choose efficient mental strategies for adding and subtracting numbers	Round and adjust to calculate，model with appropriate visual 350－198 modelled with place value counters：take away 200，add 2 ．					Choose whether to count on or count back，show with number line or bar model．		
Become fluent in written methods for addition and subtraction	Model vertical methods for addition and subtraction step－by－step using place value counters and iPad app＇I See Addition and Subtraction＇．							
Understand and represent multiplication and division in a range of ways；derive related facts from a given calculation．	Use arrays and bar models to derive related multiplication and division facts This image shows 4×6 方方会会 会 Change the image to show 4×7 This image shows 4×6 Use the image to calculate 4×12					Understand division as＇how many［divisors］in［dividend］＇showing remainders using matchsticks to make shapes and bar models．$17 \div 3$		

Objective	Visual Representations
Use efficient formal written methods for multiplication and division of 3-digit numbers	Division modelled with place value counters. Written multiplication represented by area model-links made between grid method and compact method.
Find equivalent fractions, calculate fractions of amounts (unit and non-unit fractions)	Fraction cards and Lego used to show equivalence. Fractions of quantities shown using place value counters and bar models, presented in stages. $\frac{3}{4} \text { of } 60$
Know decimal equivalents for quarters and halves, relating to division	Dividing length of a metre ruler into two/four equal parts.

Year 5

Objective	Visual representations
Develop a range of strategies for division including efficient written methods	Division modelled with place value counters. Bar model used to reinforce 'how many [divisors] in [dividend]?'
Compare and order fractions, find equivalent fractions, add and subtract fractions.	Fraction cards used to compare, show equivalence and model calculations. Example: $3 / 4+1 / 2$
Find decimal equivalents for quarters, fifths and tenths, relating to division	Dividing length of a metre ruler into two/four/five equal parts.

